Search results for "Ion beam analysis"

showing 10 items of 16 documents

Trajectory bending and energy spreading of charged ions in time-of-flight telescopes used for ion beam analysis

2014

Carbon foil time pick-up detectors are widely used in pairs in ion beam applications as time-of-flight detectors. These detectors are suitable for a wide energy range and for all ions but at the lowest energies the tandem effect limits the achievable time of flight and therefore the energy resolution. Tandem effect occurs when an ion passes the first carbon foil of the timing detector and its charge state is changed. As the carbon foil of the first timing detector has often a non-zero voltage the ion can accelerate or decelerate before and after the timing detector. The combination of different charge state properties before and after the carbon foil now induces spread to the measured times…

ToF-ERDANuclear and High Energy PhysicsRange (particle radiation)Ion beam analysista114Ion beamPhysics::Instrumentation and DetectorsChemistryDetectortandem effectIonTime of flightPhysics::Plasma Physicscarbon foilElectric fieldtime-of-flighToF-EAtomic physicsInstrumentationFOIL methodNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Ion-sputtering deposition of Ca–P–O films for microscopic imaging of osteoblast cells

2007

Abstract An ion-beam sputtering technique was used to produce Ca–P–O films on borosilicate glass at room temperature from hydroxyapatite targets using nitrogen, argon and krypton beams at different acceleration voltages. The sputtering target was pressed from high purity hydroxyapatite powder or mixture of high purity hydroxyapatite powder and red phosphorus in order to optimise the film composition. The film composition, determined using time-of-flight elastic recoil detection analysis (TOF–ERDA), was found to be strongly dependent on the ion energy used for deposition. By extra doping of the target with P the correct Ca/P atomic ratio in the deposited films was reached. The films deposite…

Nuclear and High Energy PhysicsIon beam analysisArgonMaterials scienceAnnealing (metallurgy)Borosilicate glassAnalytical chemistrychemistry.chemical_elementAmorphous solidElastic recoil detectionchemistrySputteringAtomic ratioInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Recent Exploits of the ISOLTRAP Mass Spectrometer

2013

Abstract The Penning-trap mass spectrometer ISOLTRAP, located at the isotope-separator facility ISOLDE (CERN), is presented in its current form taking into account technical developments since 2007. Three areas of developments are presented. The reference ion sources have been modified to guarantee a sufficient supply of reference ions for mass measurements and systematic studies. Different excitation schemes have been investigated for manipulation of the ion motion in the Penning trap, to enhance either the purification or measurement process. A multi-reflection time-of-flight mass separator has been implemented and can now be routinely used for purification and as a versatile tool for bea…

Penning-trap mass spectrometryNuclear and High Energy PhysicsLarge Hadron ColliderIon beam analysisChemistry010401 analytical chemistryMeasurement of pure ion ensembles[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Mass spectrometryPenning trap01 natural sciencesISOLTRAPMulti-reflection time-of-flight mass separator0104 chemical sciencesSecondary ion mass spectrometryNuclear physicsIon-beam analysis0103 physical sciencesBeam purificationIon trapAtomic physics010306 general physicsNuclear ExperimentInstrumentationHybrid mass spectrometer
researchProduct

Thin film growth into the ion track structures in polyimide by atomic layer deposition

2017

Abstract High-aspect ratio porous structures with controllable pore diameters and without a stiff substrate can be fabricated using the ion track technique. Atomic layer deposition is an ideal technique for depositing thin films and functional surfaces on complicated 3D structures due to the high conformality of the films. In this work, we studied Al2O3 and TiO2 films grown by ALD on pristine polyimide (Kapton HN) membranes as well as polyimide membranes etched in sodium hypochlorite (NaOCl) and boric acid (BO3) solution by means of RBS, PIXE, SEM-EDX and helium ion microcopy (HIM). The focus was on the first ALD growth cycles. The areal density of Al2O3 film in the 400 cycle sample was det…

Nuclear and High Energy PhysicsMaterials scienceAnalytical chemistry02 engineering and technologySubstrate (electronics)ion trackpolyimide01 natural sciencesAtomic layer depositionEtching (microfabrication)0103 physical sciencesetchingComposite materialThin filmInstrumentation010302 applied physicsIon beam analysista114broad ion beam cuttingIon trackion beam analysis021001 nanoscience & nanotechnologyKaptonatomic layer depositionhelium ion microscopy0210 nano-technologyPolyimideNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Ion beam analysis and alpha spectrometry of sources electrodeposited on several backings

1998

Abstract Alpha sources of several activities were prepared by electrodeposition of natural uranium onto four different backings: stainless steel, Ni, Mo and Ti. The influence of the activity, the type of backing, and the process of heating the source on the energy resolution of the spectra were investigated using alpha spectrometry and Rutherford Backscattering Spectrometry (RBS) techniques. Diffusion profiles of the radioactive deposits in the backings were obtained from RBS and related to the results using alpha spectrometry

Nuclear and High Energy PhysicsIon beam analysisMaterials scienceAlpha spectrometryResolution (mass spectrometry)Radiochemistrytechnology industry and agricultureAnalytical chemistryNatural uraniumRutherford backscattering spectrometryInstrumentation
researchProduct

Time-of-flight - Energy spectrometer for elemental depth profiling - Jyväskylä design

2014

Abstract A new time-of-flight elastic recoil detection spectrometer has been built, and initially the main effort was focused in getting good timing resolution and high detection efficiency for light elements. With the ready system, a 154 ps timing resolution was recorded for scattered 4.8 MeV 4 He 2+ ions. The hydrogen detection efficiency was from 80% to 20% for energies from 100 keV to 1 MeV, respectively, and this was achieved by having an additional atomic layer deposited Al 2 O 3 coating on the first timing detector’s carbon foil. The data acquisition system utilizes an FPGA-card to time-stamp every time-of-flight and energy event with 25 ns resolution. The different origins of the ba…

ToF-ERDANuclear and High Energy Physicstiming gateMaterials scienceIon beam analysista114SpectrometerHydrogenbusiness.industryDetectorchemistry.chemical_elementelemental depth profilingion beam analysistime-of-flightElastic recoil detectionTime of flightData acquisitionOpticschemistryCoincidentbusinessInstrumentation
researchProduct

Phosphites as precursors in atomic layer deposition thin film synthesis

2021

We here demonstrate a new route for deposition of phosphorous based materials by atomic layer deposition (ALD) using the phosphites Me3PO3 or Et3PO3 as precursors. These contain phosphorous in the oxidation state (III) and are open for deposition of reduced phases by ALD. We have investigated their applicability for the synthesis of LiPO and AlPO materials and characterized their growth by means of in situ quartz crystal microbalance. Phosphites are good alternatives to the established phosphate-based synthesis routes as they have high vapor pressure and are compatible with water as a coreactant during deposition. The deposited materials have been characterized using XPS, x-ray fluorescence…

Materials scienceIon beam analysisfosfaatitVapor pressureSurfaces and InterfacesQuartz crystal microbalanceatomikerroskasvatusCondensed Matter PhysicsSurfaces Coatings and FilmsAtomic layer depositionX-ray photoelectron spectroscopyChemical engineeringfosfiititOxidation stateDeposition (phase transition)ohutkalvotThin film
researchProduct

Formation of cobalt silicide films by ion beam deposition

2006

Abstract Thin films of cobalt silicide are widely used as metallization in very large-scale integrated electronic circuits. In this study, Co ions were deposited on Si(1 1 1) wafers by a high beam current filter metal vacuum arc deposition (FMEVAD) system. Surface silicide films were formed after annealing from 500 to 700 °C for 30 min. The results show that a thin CoSi2 surface layer with both a smooth surface topography and sharp interface can be achieved by annealing at 700 °C. The CoSi phase and O contamination were observed in the samples that were annealed at lower temperatures.

Nuclear and High Energy PhysicsIon beam analysisMaterials scienceAnnealing (metallurgy)business.industryMetallurgyVacuum arcchemistry.chemical_compoundIon beam depositionchemistrySilicideOptoelectronicsWaferSurface layerThin filmbusinessInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Determination of molecular stopping cross section of 12C, 16O, 28Si, 35Cl, 58Ni, 79Br, and 127I in silicon nitride

2015

Abstract Silicon nitride is a technologically important material in a range of applications due to a combination of important properties. Ion beam analysis techniques, and in particular, heavy ion elastic recoil detection analysis can be used to determine the stoichiometry of silicon nitride films, which often deviates from the ideal Si3N4, as well as the content of impurities such as hydrogen, even in the presence of other materials or in a matrix containing heavier elements. Accurate quantification of IBA results depends on the basic data used in the data analysis. Quantitative depth profiling relies on the knowledge of the stopping power cross sections of the materials studied for the io…

Silicon nitrideNuclear and High Energy PhysicsIon beam analysisMaterials scienceta114HydrogenIon beam analysischemistry.chemical_elementHeavy ionsIonElastic recoil detectionchemistry.chemical_compoundchemistrySilicon nitrideImpurityThin filmAtomic physicsStopping powerInstrumentationStoichiometryNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Design of a 10 GHz minimum-B quadrupole permanent magnet electron cyclotron resonance ion source

2020

This paper presents a simulation study of a permanent magnet electron cyclotron resonance ion source (ECRIS) with a minimum-B quadrupole magnetic field topology. The magnetic field is made to conform to conventional ECRIS with $B_\textrm{min}/B_\textrm{ECR}$ of 0.67 and a last closed magnetic isosurface of 1.86$B_\textrm{ECR}$ at 10 GHz. The distribution of magnetic field gradients parallel to the field, affecting the electron heating efficiency, cover a range from 0 to 13 T/m, being similar to conventional ECRIS. Therefore it is expected that the novel ion source produces warm electrons and high charge state ions in significant number. Single electron tracking simulations are used to estim…

Accelerator Physics (physics.acc-ph)PhysicsIon beam analysis010308 nuclear & particles physicsFOS: Physical sciencesElectron01 natural sciences7. Clean energyIon sourceElectron cyclotron resonance030218 nuclear medicine & medical imagingIon03 medical and health sciences0302 clinical medicineBeamlinePhysics::Plasma PhysicsMagnet0103 physical sciencesQuadrupolePhysics::Accelerator PhysicsPhysics - Accelerator PhysicsAtomic physicsInstrumentationMathematical PhysicsJournal of Instrumentation
researchProduct